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Two-dimensional copolymers and multifractality: Comparing perturbative expansions,
Monte Carlo simulations, and exact results
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We analyze the scaling laws for a set of two different species of long flexible polymer chains joined together
at one of their extremities~copolymer stars! in space dimensionD52. We use a formerly constructed field-
theoretic description and compare our perturbative results for the scaling exponents with recent conjectures for
exact conformal scaling dimensions derived by a conformal invariance technique in the context ofD52
quantum gravity. A simple Monte Carlo simulation brings about reasonable agreement with both approaches.
We analyze the remarkable multifractal properties of the spectrum of scaling exponents.
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Polymers serve as a testing ground for a field theory si
the early 1970s@1,2#. The path-integral formulation@3# al-
lows for a direct interpretation of the paths as conformatio
of random walks~RWs! and self-avoiding walks~SAWs!.
Closed paths in this theory have a multiplicity of the numb
of componentsM of the field. The formal limitM50 ex-
cludes these loops and yields the polymer limit of fie
theory, that describes self and mutually interacting paths.
field theoretical description of the scaling properties of po
mer chains in good solvents has been generalized to the
of multicomponent polymer solutions@4# and linked poly-
mers@5,6#. Recently, the theory was suited to describe po
mer networks of different species@7,8#. The simplest non-
trivial case of a heterogeneous polymer network—a s
shaped copolymer inD52 dimensions–is the subject of th
present report.

Polymer field theory usually has to be evaluated in ter
of a truncated perturbation theory series. Obviously, it is
ways of special importance to compare these with the e
results if such exist. As a rule they are available forD51,2.
For the critical exponents that describe the scaling of hom
geneous polymer chains and star polymers~or, more gener-
ally, homogeneous polymer networks! the perturbative ap-
proach @5# is in fair agreement with the exact data forD
52 @6#. For the heterogeneous case however, only pertu
tive results@7,8# were available until recently. An exact so
lution for scaling exponents has been recently proposed
uses methods of conformal invariance on random graphs@9#.
Below we undertake a comparative analysis of the proper
of the perturbative solution and of the exact one and com
ment these results by Monte Carlo~MC! simulations. We
show where the approaches agree and explain why they
fer in general. In this respect, our report confirms some of
speculative results of@9# derived from the algebra of confor
mal dimensions for copolymer stars on 2D random graphs
~quantum gravity!.

A remarkable feature of the scaling spectrum of a copo
mer star is that it possesses multifractal properties that
also be analyzed in terms of field theory and the conform
invariance approach@7–12#.
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I. COPOLYMER STARS AND THEIR SCALING
EXPONENTS

Star polymers as the most simple nontrivial examples
polymer networks@5,6# are created by linking together th
end points of polymer chains at a common core. Let us n
consider a general star polymer made of chains oftwo dif-
ferent species~while all chains have equilibrium sizeR).
When such acopolymer staris immersed in a good solven
its asymptotic properties are universal in the limit of lon
chains@1–3#. In particular, the number of configurations~the
partition functionZ* ) scales withR on some scalel as

Z* ;~R/l !2l f 1 , f 2, ~1!

wherel f 1 , f 2
constitute a family of copolymer star exponen

@7,8#. These are universal and depend only on the space
mensionD and the number of chains of different species
and 2 (f 1 and f 2, correspondingly!. If a nonvanishing mutual
avoidance interaction is present between the chains of
cies 1 and 2 polymer field theory predicts two nontriv
physically different regimes@4# for the scaling behavior of
true copolymer stars described by Eq.~1!: In the first case,
the polymers of species 1 behave as RWs and the polym
of species 2 as SAWs, whereas in the second case both
cies display RW behavior@13#. For these two relevant case
a renormalization-group description of the exponentsl f 1 , f 2

has been given in terms of the scaling dimensions of app
priately composed composite operators of polymer fi
theory@7#. In particular, the resulting perturbation theory w
derived in the form of an«542D expansion as well as
evaluated directly for fixedD @14#. Following Ref.@7# where
the copolymer star exponentsh f 1 , f 2

were calculated, the«

expansion for thel exponents of a copolymer star compos
of two mutually avoiding sets of RWs (l f 1 , f 2

G 52h f 1 , f 2

G ) and

for a star of mutually avoiding sets of SAWs and RW
(l f 1 , f 2

U 52h f 1 , f 2

U 1 f 1h2,0
U ) read
©2002 The American Physical Society01-1
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TABLE I. Exponentsl calculated by different techniques. Upper part:l f 1 , f 2

G ( f 1 RWs and f 2 RWs!.

Lower part:l f 1 , f 2

U ( f 1 SAWs andf 2 RWs!.

f 1 ; f 2 1;1 1;2 1;3 1;4 1;5 2;1 2;2 2;3 2;4 2;5

exact 1.25 2 2.693 3.356 4 2.916 3.738 4.510 5.2
MC 1.251 1.986 2.662 3.295 3.908 2.913 3.703 4.506
6D 0.004 0.004 0.005 0.015 0.022 0.005 0.030 0.039
D52 1.22 2.00 2.58 3.04 3.43 3.45 4.59 5.52 6.3
«3 1.20 2.00 2.56 2.99 3.36 3.41 4.49 5.37 6.13

Exact 0.38 1.04 1.67 2.28 2.88 0.88 1.79 2.61 3.39 4.1
D52 0.34 1.01 1.54 2.02 2.41 0.72 1.85 2.80 3.64 4.3
«3 0.32 1.03 1.57 2.01 2.41 0.76 1.87 2.82 3.62 4.3
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l f 1 , f 2

G ~«!5
f 1f 2«

2 H 12~ f 2231 f 1!
«

4 F12~ f 11 f 213z~3!

23!
«

2G J , ~2!

l f 1 , f 2

U ~«!52 f 1~32 f 123 f 2!
«

8
2 f 1~43233f 118 f 1

2291f 2

142f 1f 2118f 2
2!

«2

256
2 f 1@6752969f 11456f 1

2

264f 1
322463f 212290f 1f 22492f 1

2f 211050f 2
2

2504f 1f 2
22108f 2

32z~3!~7122936f 11224f 1
2

22652f 211188f 1f 21540f 2
2!#

«3

4096
, ~3!

wherez(3).1.202 is the value of the Riemann zeta fun
tion. While we do not display the exponents calculated
fixed space dimensionD here explicitly, we show their nu
merical values below.

The perturbative formulas of the kind given in Eqs.~2!–
~3! may be evaluated forD53 where the topological com
plexity of the problem does not allow for an exact treatme
One should be aware that for similar reasons an exact
pression for the partition functionZ* , formula~1!, cannot be
obtained forD52 either. However, appropriate identificatio
of the universality classes ofD52 critical behavior with
conformally invariant theories often allows us to extract t
exact values of critical exponents. In Refs.@9# this was suc-
cessfully performed for theD52 copolymer star of two or
more mutually avoiding bunches of SAWs and RWs. He
we analyze a copolymer star of one or two RWs or SAWs
species 1 and a bunch off 2 RWs of species 2. In the notatio
of the above equations the following exact expressions
the corresponding exponents are derived from Refs.@9#:

l1,f 2

G 5
4 f 2111a

8
, l2,f 2

G 5
12f 211115a

24
, ~4!

l1,f 2

U 5
12f 221312a

24
, l2,f 2

U 5
12f 221615a

24
, ~5!
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with a5A24f 211.
As far as this is not an exact solution in terms of t

original theory but rather an ‘‘exact conjecture’’ for the e
ponents we performed one more check of the scaling ex
nents by a MC simulation for the simplest case when
copolymer star consists of RWs only (l1,f 2

G ,l2,f 2

G ). In these

simulations the stars are grown on a square lattice unt
nonallowed intersection occurs. The number of starsC(N)
generated during the growing process is accumulated fo
chain lengthsN. Exponents are extracted assuming a pow
law C(N);N2n0l f 1 , f 2 where the RW correlation length ex
ponent isn051/2. We generate stars up to a maximum ch
length Nmax5103 and accumulate configurations un
C(Nmax)5105. The number of successful attempts to gro
stars with longer chains decreases rapidly for higherf 11 f 2
which increases simulation time drastically. While for th
case 111 a total of 106 attempts were needed, this numb
rose to 53109 for 511. Therefore, we report results onl
for f 11 f 2<6. From the bare simulation data we extract
the numerical values of the exponents by an extrapolatio
1/N→0. In Table I we report the results and the statistic
error of this extrapolation in the lines marked ‘‘MC’’ an
‘‘ 6D.’’ We compare with the exact numbers according
Eqs. ~4!. The results are in fair agreement with a slight
growing discrepancy as the number of RWsf 2 increases.

In Fig. 1 we compare the results with the perturbative d
of the « expansion naively adding successive orders of
perturbation theory series~2!. We show the«2 and «3 ap-
proximations. The values predicted by successive order
the« expansion for«52 do not seem to correlate with eac
other nor with the exact values of thed52 exponents. It is
not only the large expansion parameter«52 that spoils the
convergence of the perturbation theory. As is well know
the perturbation theory series of renormalized field theory
asymptotic at best@16# and have zero radius of convergen
@17#. An appropriate resummation technique must be use
extract reliable data from the series. Here we use a B
resummation refined by a conformal mapping@15# as de-
scribed for this particular case in Ref.@7#.

The resummation procedure allows us to restore con
gence of the« expansion and enables us to extract relia
exponent values. These are also shown in Fig. 1. The s
resummation is applied for the renormalization-group exp
1-2
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sions at fixedD52 @14#. All data are summarized in Table
For l1,2

G perturbation theory gives the exact result at fi
order with all higher orders vanishing@18#. The correspond-
ing D53 dimensional results may be derived from the d
given in Ref. @7#. The lower part of the table contains th
data for the resummed values of the exponentsl2,f 2

U for the

combined SAW and RW copolymer stars. We show the v
ues obtained by the fixedD52 technique and the« expan-
sion in comparison with their exact counterparts~5!. Again,
the results are in fair agreement for not too large number
chainsf 2. Indeed as one can see from the formulas~2!–~3!
the increase off 2 leads to an increase of the« expansion
coefficients resulting in a growing inaccuracy even of t
resummed series.

In the perturbative treatment~which starts from the uppe
critical dimensionD54 @2#! the order of the chains in th
star does not matter for the scaling laws: there is alway
possibility for every chain to interact with any other cha
constituting a star. On the other hand, inD52 the order of
chains does matter: each chain of the star will interact o
with its direct neighbors. This topological restriction has
be taken into account when comparing exact and pertu
tive results forD52 linked polymers.

The data of Table I convince us that the perturbat
theory series for low numbers of chainsf 2 is reliable even
for D52. Also, we note that theD52 copolymers withf 1
52 are worse described by the perturbation theory t
those with f 151 where the topological restriction is no
present, due to the symmetry of ordering.

II. MULTIFRACTAL SPECTRUM

It is of special interest to notice another physical interp
tation for the copolymer star exponents~1!. For the diffusion
of freely moving particles in the presence of a polymer a
sorber it may be shown@10# that the moments of particle
density display universal scaling laws in the vicinity of th

FIG. 1. Exponentl1,n
G . Lines: exact~bold!, bare«2 ~dashed!,

and «3 ~dotted! data. Symbols: MC (j, size is larger than error
bars!; the resummed«3 (d), andD52 data (l) are connected by
thin lines.
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absorbing polymer. In particular, thenth moment^rn& at
distancer from the core of an absorbing polymer star withm
chains scales as@7,10#

^rn~r !&;~R/r !2lm,n, ~6!

here^•••& denotes the ensemble average over the confi
rations of the absorbing polymers while otherwise we use
notations of formula~1!. The harmonic measure that corr
sponds to this absorption phenomenon possesses multifr
@10–12# properties: The fluxf of diffusing particles onto the
polymer star is interpreted as a measure defined on the fra
structure of the star polymer. This flux is proportional to t
particle density~6! some small distancel away from an
absorbing point on the star polymer. The following scali
law for the normalized moments of the harmonic measure
the core of the star polymer is derived:

^fn&/^f&n;~R/l !2tm,n. ~7!

Comparing formulas~6! and ~7! the obvious relation be-
tween the exponentst andl is

tm,n5lm,n2nlm,1 . ~8!

Note, that here we use the standard definition@10# for the
spectrum of the exponentst, including normalization of the
nth moment of the flux in Eq.~7! by ^f&n. The expression
~7! is a multifractal measure as far as the spectrumt is
nontrivial (tÞ0). Obviously, the spectruml is nontrivial as
well, as one can see already from the second-order pertu
tive results~2!, ~3!: lmnÞnlm1.

The description of multifractal phenomena often uses
spectral function formalism@12#. To obtain this function for
the absorption process on the center of a star ofm chains we
analytically continue the set of exponentstmn in the variable
n and calculate the following Legendre transform:

f m~amn!52tmn1namn1d~12n!,

amn5
dtmn

dn
1d. ~9!

According to the standard definition@10# we have included
into Eq. ~9! the fractal dimensiond of the absorber. In par-
ticular, this gives the maximal value of the spectral functi
to be equal tod2tm0[d2lm0. There appears to be no natu
ral generalization ofd for arbitrarym. In our presentation we
use that the fractal dimension of a polymer star is equa
that of a polymer chain (d52 for a RW andd54/3 for a
SAW in D52, correspondingly!. Another way to define the
multifractal spectrum is chosen in Refs.@9# where thenth
moments~7! are normalized not bŷf&n but by ^f&. This
choice has the remarkable feature that without introducing
additional dimensiond in Eq. ~9! the maximum off (a) d
54/3 for both the SAW and the RW absorbers withf 152.
However, this definition is not general, as already inD53 it
does not lead to the correct location of the spectral funct
maximum.
1-3



ab
is

d

p
o
nt
all

of

his
ions

ely
co-

ion
for

ult-

an
e
ion
at

x-

ate-

nd

BRIEF REPORTS PHYSICAL REVIEW E 65 042801
We display the spectral function for the case of the
sorption at a RW end in Fig. 2. The spectral function
negative for some values ofa. This behavior was observe
already in the perturbative studies of Ref.@10# and related to
the ensemble average in formulas~6!, ~7! in contrast to the
usual site average over the support of the measure. Com
ing the perturbative, the MC, and the exact results we n
that the region of 1,n,5 in which reasonable agreeme
for the spectral andt is found corresponds to a rather sm
region in terms of the parametera in the left wing of the
spectral functions.

FIG. 2. The spectral function for the absorption at a RW e
Symbols as in Fig. 1.
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III. CONCLUSIONS

The field theoretical description of a polymer network
different species has been derived recently@7,8# in the form
of renormalization-group perturbation theory series. In t
report, we compared and verified the perturbation expans
for D52 with a subsequently published exact study@9# and
MC simulations. We found that the series when appropriat
resummed give a reliable description of the scaling of
polymer stars with not too many chains even for theD52
dimensional case. Not only the increase of the expans
parameter forbids application of the perturbative results
higher numbers of chains: inD52 topological restrictions
appear that are not taken into account by field theory.

We have analyzed the multifractal properties of the res
ing spectra of exponents and found that the spectrumt(n) is
in much better coincidence with the exact counterpart th
the spectral functionf (a). In the latter case the perturbativ
approach gives comparable results only for a narrow reg
in the left wing of the spectral function. Note however, th
the right wing corresponds to negative values ofn, where
obviously the analytic continuation of the perturbative e
pansions as well as of the exact results is speculative.
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