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Two-dimensional copolymers and multifractality: Comparing perturbative expansions,
Monte Carlo simulations, and exact results
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We analyze the scaling laws for a set of two different species of long flexible polymer chains joined together
at one of their extremitiescopolymer starsin space dimensio® =2. We use a formerly constructed field-
theoretic description and compare our perturbative results for the scaling exponents with recent conjectures for
exact conformal scaling dimensions derived by a conformal invariance technique in the conixt2of
guantum gravity. A simple Monte Carlo simulation brings about reasonable agreement with both approaches.
We analyze the remarkable multifractal properties of the spectrum of scaling exponents.
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Polymers serve as a testing ground for a field theory since I. COPOLYMER STARS AND THEIR SCALING
the early 197041,2]. The path-integral formulatiof3] al- EXPONENTS

lows for a direct interpretation of the paths as conformations . o
of random walks(RWS and self-avoiding walkgSAWS). Star polymers as the most simple npnt_rlwal examples of
Closed paths in this theory have a multiplicity of the numberP0lymer networkd5,6] are created by linking together the
of componentsM of the field. The formal limitM =0 ex- end pomts of polymer chains at a common core. Let us now
cludes these loops and yields the polymer limit of fieldConsider a general star polymer made of chainsaf dif-
theory, that describes self and mutually interacting paths. Théerent speciegwhile all chains have equilibrium sizB).
field theoretical description of the scaling properties of poly-When such aopolymer staris immersed in a good solvent
mer chains in good solvents has been generalized to the ca® asymptotic properties are universal in the limit of long
of multicomponent polymer solutiongt] and linked poly- chains[1-3]. In particular, the number of configuratioftbe
mers[5,6]. Recently, the theory was suited to describe poly-partition functionZ, ) scales withR on some scale” as
mer networks of different specid3,8]. The simplest non-
trivial case of a heterogeneous polymer network—a star-
shaped copolymer i® =2 dimensions—is the subject of the Z,~(RI/) Moty (1)
present report.

Polymer field theory usually has to be evaluated in terms . .
of a truncated perturbation theory series. Obviously, it is alWhereéXs, s, constitute a family of copolymer star exponents
ways of special importance to compare these with the exadi,8]. These are universal and depend only on the space di-
results if such exist. As a rule they are available@oe1,2.  mensionD and the number of chains of different species 1
For the critical exponents that describe the scaling of homoand 2 {, andf,, correspondingly If a nonvanishing mutual
geneous polymer chains and star polym@ns more gener- avoidance interaction is present between the chains of spe-
ally, homogeneous polymer netwoykihe perturbative ap- cies 1 and 2 polymer field theory predicts two nontrivial
proach[5] is in fair agreement with the exact data @  physically different regime$4] for the scaling behavior of
=2 [6]. For the heterogeneous case however, only perturbarue copolymer stars described by H): In the first case,
tive results[7,8] were available until recently. An exact so- the polymers of species 1 behave as RWs and the polymers
lution for scaling exponents has been recently proposed thaff species 2 as SAWSs, whereas in the second case both spe-
uses methods of conformal invariance on random gréphs  cies display RW behavidrL3]. For these two relevant cases
Below we undertake a comparative analysis of the propertieg renormalization-group description of the exponexys;,
of the perturbative solution and of the exa(_:t one_and complenas been given in terms of the scaling dimensions of appro-
ment these results by Monte CarldIC) simulations. We  jately composed composite operators of polymer field
show where the approaches agree and explain why they difheqry[7]. In particular, the resulting perturbation theory was
ferin ger_1era|. In this respect, our report confirms some of thearived in the form of are=4—D expansion as well as
specullatwe .results ¢B] derived from the algebra of confor- o, 41 ated directly for fixe® [14]. Following Ref.[7] where
mal dimensions for copolymer stars o Zandom graphs ¢ copolymer star exponentg ;, were calculated, the

(quantum gravity. ion for tha. s of | ¢ q
A remarkable feature of the scaling spectrum of a Copoly_expansmn or exponents ol a copolymer s %r compose
f two mutually avoiding sets of RWS\E,fZZ — 7y, 1,) and

mer star is that it possesses multifractal properties that ca .
also be analyzed in terms of field theory and the conformafor a star of mutually avoiding sets of SAWs and RWs
invariance approacfr—12]. ()\%’1va= - 77}’1ny+ f1750 read
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TABLE |. Exponentsh calculated by different techniques. Upper p.s\rft‘“.l,f2 (f; RWs andf, RWs).
Lower part:)\?l'f2 (f; SAWs andf, RWSs).

fi:fs 11 1;2 1;3 1;4 15 2;1 2;2 2;3 2;4 2,5
exact 1.25 2 2.693 3.356 4 2916 3.738 4510 5.25
MC 1.251 1.986 2.662 3.295 3.908 2.913 3.703 4.506
*A 0.004 0.004 0.005 0.015 0.022 0.005 0.030 0.039
D=2 1.22 2.00 2.58 3.04 3.43 3.45 4.59 5.52 6.34
g3 1.20 2.00 2.56 2.99 3.36 341 4.49 5.37 6.13
Exact 0.38 1.04 1.67 2.28 2.88 0.88 1.79 2.61 3.39 4.13
D=2 0.34 1.01 1.54 2.02 241 0.72 1.85 2.80 3.64 4.39
&3 0.32 1.03 1.57 2.01 241 0.76 1.87 2.82 3.62 4.34
f1f28 & W|th a= \/24f2+ 1.

Np(8)= =5 1= (fa= 3+ f1) 1 1= (f1+ 15+ 34(3) As far as this is not an exact solution in terms of the

original theory but rather an “exact conjecture” for the ex-

ponents we performed one more check of the scaling expo-
_3)5 ' @) nents by a MC simulation for the simplest case when the

copolymer star consists of RWs only§; A5 ). In these

)\]y . (8):_f1(3_f1_3f2)g_f1(43_33f1+8fi_91f2 simulations fche star; are grown on a square lattice until a
12 8 nonallowed intersection occurs. The number of sta¢bl)
2 generated during the growing process is accumulated for all
2_56_f1[675_ 969f , + 4562 chain lengthsN. Exponents are extracted assuming a power
law C(N)~N~"0M..f, where the RW correlation length ex-
_64f’i‘_24632+ 229(]=lf2_492fif2+ 1050% ponent isvy=1/2. We generate stars up to a max_imum cha_lin
length Np.,=10° and accumulate configurations until
—504f ,f5—108f3— £(3)(712— 936f , + 224f2 C(Na) =10°. The number of successful attempts to grow
stars with longer chains decreases rapidly for higher f,
—265%.+ 118 . f +540f2)]8_3 3) which increases simulation time drastically. While for the
2 12 2714096’ case 11 a total of 16 attempts were needed, this number
) ) rose to 5<10° for 5+ 1. Therefore, we report results only
where {(3)=1.202 is the value of the Riemann zeta func-for f,+f,<6. From the bare simulation data we extracted
tion. While we do not display the exponents calculated athe numerical values of the exponents by an extrapolation to
fixed space dimensiob here explicitly, we show their nu- 1/y_.0. In Table | we report the results and the statistical
merical values below. _ _ _ error of this extrapolation in the lines marked “MC” and
The perturbative formulas of the kind given in EG8)—  « + A » we compare with the exact numbers according to
(3) may be evaluated fob =3 where the topological com- Eqs (4). The results are in fair agreement with a slightly
plexity of the problem does not allow for an exact treatmentgrowing discrepancy as the number of Risincreases.
One should be aware that for similar reasons an exact eX- | Fig. 1 we compare the results with the perturbative data
pression for the partition functiaf, , formula(1), cannotbe  f the ¢ expansion naively adding successive orders of the
obtained foiD =2 either. However, appropriate identification perturbation theory serie®). We show thes2 and &3 ap-
of the universality classes dd=2 critical behavior with  yroximations. The values predicted by successive orders of
conformally invariant theories often allows us to extract theie ¢ expansion foe =2 do not seem to correlate with each
exact values of critical exponents. In Refi8] this was suc-  qther nor with the exact values of tlle=2 exponents. It is
cessfully performet_:l for th® =2 copolymer star of two or ¢ only the large expansion parametes 2 that spoils the
more mutually avoiding bunches of SAWs and RWSs. Hereconyergence of the perturbation theory. As is well known,
we analyze a copolymer star of one or two RWs or SAWS ofine perturbation theory series of renormalized field theory are
species 1 and a bunch bf RWs of species 2. In the notation asymptotic at bedtl6] and have zero radius of convergence
of the above equatlons the foIIowmg_ exact expressions fo[17]_ An appropriate resummation technique must be used to
the corresponding exponents are derived from Réfs. extract reliable data from the series. Here we use a Borel
resummation refined by a conformal mappifip] as de-

+42f  ,+ 18f2)

ff — w’ gf — w' (4) scribed for this particular case in R¢T].
"2 8 "2 24 The resummation procedure allows us to restore conver-
gence of thes expansion and enables us to extract reliable
u _ 12f,—13+2a N, = 12f,—16+5a (5) exponent values. These are also shown in Fig. 1. The same
Li ™ 24 v et 24 ’ resummation is applied for the renormalization-group expan-
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4.0 - absorbing polymer. In particular, theth moment(p") at
3.5_' : dlstance” from the core of an absorbing polymer star with
] /0 chains scales d9,10]
3.0
- (p"(1)~(RIr)~Mmn, (6)
2.54
5 0_‘ & here(- - -) denotes the ensemble average over the configu-
< rations of the absorbing polymers while otherwise we use the
1.54 notations of formulal). The harmonic measure that corre-
1 N sponds to this absorption phenomenon possesses multifractal
1.0 [10-12 properties: The fluxp of diffusing particles onto the
0.5 1/ polymer star is interpreted as a measure defined on the fractal
structure of the star polymer. This flux is proportional to the
0.0 e T T T ¥ T particle density(6) some small distance” away from an
0 1 2 3 4 5 absorbing point on the star polymer. The following scaling
n law for the normalized moments of the harmonic measure at
FIG. 1. Exponenb\fn. Lines: exact(bold), baree? (dashed the core of the star polymer is derived:
and & (dotted data. Symbols: MC M, size is larger than error- (™ ()~ (RI/)~7mn, 7)

barg; the resummed® (@), andD =2 data (¢ ) are connected by

thin lines. Comparing formulas(6) and (7) the obvious relation be-

. . ) ) tween the exponents and\ is
sions at fixedD =2 [14]. All data are summarized in Table |.

For )\fz perturbation theory gives the exact result at first
order with all higher orders vanishiid8]. The correspond-
ing D=3 dimensional results may be derived from the dataNote, that here we use the standard definifidf] for the
given in Ref.[7]. The lower part of the table contains the spectrum of the exponents including normalization of the
data for the resummed values of the expone&n@tﬁ2 for the  nth moment of the flux in Eq(7) by (¢)". The expression
combined SAW and RW copolymer stars. We show the val{7) is a multifractal measure as far as the spectruris
ues obtained by the fixel =2 technique and the expan-  nontrivial (7#0). Obviously, the spectrum is nontrivial as
sion in comparison with their exact counterpas Again,  Well, as one can see already from the second-order perturba-
the results are in fair agreement for not too large numbers dive results(2), (3): X mp# N\ s
chainsf,. Indeed as one can see from the formul2is-(3) The description of multifractal phenomena often uses the
the increase of, leads to an increase of the expansion spectral function formalisrfil2]. To obtain this function for
coefficients resulting in a growing inaccuracy even of thethe absorption process on the center of a stanchains we
resummed series. analytically continue the set of exponents, in the variable

In the perturbative treatmeitvhich starts from the upper n and calculate the following Legendre transform:
critical dimensionD =4 [2]) the order of the chains in the

7'm,n:)\m,n_n)\m,l- (8

star does not matter for the scaling laws: there is always a fl(@mn) = = Tmnt Nama+d(1—n),

possibility for every chain to interact with any other chain

constituting a star. On the other hand,Dr=2 the order of d7mn

chains does matter: each chain of the star will interact only Xmn~ "4 +d. ©

with its direct neighbors. This topological restriction has to

be taken into account when comparing exact and perturbasccording to the standard definitidi0] we have included
tive results forD=2 linked polymers. into Eq. (9) the fractal dimensionl of the absorber. In par-
The data of Table | convince us that the perturbationtjcular, this gives the maximal value of the spectral function
theory series for low numbers of chaifig is reliable even g pe equal t@l— 7,,y=d— \ 0. There appears to be no natu-
for D=2. Also, we note that th® =2 copolymers withf;  ra| generalization ofl for arbitrarym. In our presentation we
=2 are worse described by the perturbation theory thamse that the fractal dimension of a polymer star is equal to
those withf;=1 where the topological restriction is not that of a polymer chaind=2 for a RW andd=4/3 for a
present, due to the symmetry of ordering. SAW in D=2, correspondingly Another way to define the
multifractal spectrum is chosen in Ref@] where thenth
moments(7) are normalized not by¢)" but by (¢). This
choice has the remarkable feature that without introducing an
It is of special interest to notice another physical interpre-additional dimensiord in Eq. (9) the maximum off («) d
tation for the copolymer star exponeltis. For the diffusion  =4/3 for both the SAW and the RW absorbers with=2.
of freely moving particles in the presence of a polymer ab-However, this definition is not general, as alreadyis 3 it
sorber it may be showhlO] that the moments of particle does not lead to the correct location of the spectral function
density display universal scaling laws in the vicinity of the maximum.

Il. MULTIFRACTAL SPECTRUM
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IlIl. CONCLUSIONS

20 / ¢ The field theoretical description of a polymer network of
different species has been derived recefily] in the form
1.5 of renormalization-group perturbation theory series. In this
report, we compared and verified the perturbation expansions
4 1.04 for D=2 with a subsequently published exact st(elyand
MC simulations. We found that the series when appropriately
/ resummed give a reliable description of the scaling of co-
0-57 ® polymer stars with not too many chains even for the 2
dimensional case. Not only the increase of the expansion
0.0 . . parameter forbids application of the perturbative results for
1.0 1.5 2.0 25 higher numbers of chains: iD=2 topological restrictions
o appear that are not taken into account by field theory.
FIG. 2. The spectral function for the absorption at a RW end.. We have analyzed the multifractal properties of the fesu't'
Symbols as in Fig. 1. ing spectra of exponents and f_ound that the spectr(m) is
in much better coincidence with the exact counterpart than
. . the spectral functiorfi(«). In the latter case the perturbative
We display the spectral function for the case of the abpproach gives comparable results only for a narrow region
sorption at a RW end in Fig. 2. The spectral function isj the left wing of the spectral function. Note however, that
negative for some values af. This behavior was observed the right wing corresponds to negative valuesnpfwhere
already in the perturbative studies of Rigif0] and related to  opviously the analytic continuation of the perturbative ex-

the ensemble average in formuled, (7) in contrast to the  pansions as well as of the exact results is speculative.
usual site average over the support of the measure. Compar-

ing the perturbative, the MC, and the exact results we note

that the region of 1<r_1<5 in which reasonable agreement ACKNOWLEDGMENT
for the spectra andr is found corresponds to a rather small
region in terms of the parameter in the left wing of the Support of the Deutsche Forschungsgemeinschatft is grate-
spectral functions. fully acknowledged.
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